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Consider the electrical resistance r,,(p) of a hypercubic bond lattice [0, n] a in Z a, 
where the bonds have resistance 112 with probability p or oo with probability 
l - p .  Let p,,(p)=n'--dr,(p) and p(p)=lim . . . . .  p,,(p). It is well known that 
p(p) < oo ifp > p,. and p(p) = c~ ifp < p,., where p,. is the percolation threshold. 
Here we show that p(p,)--cry, and limptp~p(p)= p(p,.)= oo. 
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1. I N T R O D U C T I O N  

The problem of  bulk t ransport  in disordered media has been studied by 
many researchers. It arises naturally in m a n y  fields such as biology and 
physics. Here we will focus on r andom resistor networks. The simple setup 
is as follows. We consider Z 't as a graph  with edges connect ing each pair 
of points with IIx- yl[ = 1, where Ilxll = max l <.,._<,t Ixi] for x = (xL ..... Xd). 
Denote  by E d the edge set of  Z d. We allocate to each edge e of  
Eac~ [0, n]  d, the electrical resistance r(e). For  simplicity, we assume that 
{r(e): e e E d n  [0, n]  d} is an i.i.d, family with a c o m m o n  distribution as 
follows: 

with probabil i ty p 

with probabil i ty 1 - p 

Let 

L,,= {0} • ~t-1 

R.= {,7} x [O,n] a-' 

(the left hyperface of  [ 0, n ] a) 

(the right hyperface of  [0, n] d) 
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N o w  we connect  all vertices in L,, and R,, by wires made  from some 
super  mater ial  which has zero electrical resistance. In other  words,  we 
can view all edges bo th  in R ,  and L,, as having the c o m m o n  endpoints  
R and L, respectively. Let r,, be the resistance between L ,  and R,, after 
this identification of vertices in L,, and R , .  As sample  space we take ~ = 
1-1 ~ ~ [ o;/,,3' V L,, ,~ n,, ~ { 1, oo } points  of  whmh" are represented as w = (r(e) : e 
[0, n]  \(L,,c~R,,)) are called configuration. Let Pp be the cor responding  
produc t  measure  on ~ .  Expecta t ion  with respect to P is denoted by E v. We 
renormal ize  r,, by 

p,(p) = n d- 2r,,(p) ( 1 ) 

It is conjectured that  p,, converges as 11 --+ ~ .  Since no one has proven  the 
conjecture,  we would rather  assume that  

lira infp , , (p)  = p(p) 

We write p(p) for the bulk resistance. The behavior  of  p(p) is very similar 
to percolat ion.  In fact, they even have the same critical threshold. To  state 
it more  precisely, consider  s tandard  (Bernoulli)  bond  percolat ion on Z d, in 
which all edges are independent ly  occupied cor responding  to r(e)-- 1 with 
probabi l i ty  p or  vacant  cor responding  r(e) = cc with probabi l i ty  1 - p. The  
cluster of  the vertex x, C(x), consists of  all vertices which are connected to 
x by an occupied pa th  on Z d. An occupied pa th  here is a nearest  ne ighbor  
pa th  on Z '~ whose edges are occupied. The  percolat ion probabi l i ty  is 
defined to be 

O(p) = Pp([C(O)I = ~z) 

and the critical threshold is defined to be 

p,. = p~(Z d) = sup{ p:  O(p) = 0} 

It is well known that  0 < p,. < 1. Fo r  any two sets of  vertices A and B we 
write A ~ B for the event that  there exists an occupied pa th  f rom some 
vertex in A to some vertex in B. Denote  by 

H =  {(x, ..... Xd): X, >/0} 

the half-space. Define the half-space percolat ion probabi l i ty  to be 

OH(p) = Pp((O,..., O) *--* oo in H)  

With these definitions, Barsky et  al/'~ proved  the following remarkab le  
result. 

Proposition. On(p) is cont inuous  and Oft(p,.)= O. 
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Now we return to discuss the bulk resistance. If p is below the critical 
threshold, by a standard percolation result (see Chapter 6 ref. 2), with 
probability less than e x p ( -  Cn) there exists a path from L,, to R,, without 
using any bond e with r(e) = oo, which is to say that 

p(p) = ~ if p<p~ 

For p >p,., Chayes and Chayes Isl proved that 

1 
dpO~(p) <~ p(p) <~ c(p) (2) 

where c(p) is a constant. In fact, one of most important problems in this 
field is to investigate the behavior when p is near or at p,.. In other words 
we at least want to know whether p(p) blows up at p,.. Since it is widely 
believed that O(p,.)=O, it then follows from (2) that we can convince 
ourselves that p(p,.) = ~ .  However, as far as we know, there is no rigorous 
proof to show that O(p,.)=O except for d = 2  and for a large d. To 
avoid the embarrassment here we improve the lower bound in (2) to 
1~[dOn(p) 0(p)] as the following theorem. 

T h e o r e m .  1/[ dOH(p) 0(p)] <.p(p). 

With the theorem and the proposition, it is easy to obtain the following 
corollary. 

C o r o l l a r y .  p(p , )  = ~ and limp~p, p(p )  = oo. 

2. P R O O F  

Before the proof of the theorem, we first introduce some basic 
knowledge of electric networks} 4) 

S h o r t i n g  Law.  Shorting certain sets of vertices on Z a together can 
only decrease the effective resistance between two given vertices. 

Proof of  Theorem. The proof is similar to the proof in ref. 3. For  
simplicity we only prove the special case d =  3. Extending the result to any 
d>~ 2 poses no serious difficulty. Set 

Ai = { ( x , ,  x_,, x3) ~ B(n): x ,  = i} 

i.e., the hyperplane with x~ = i and 

Si = {eeEa c~ [O,n]a: vl eAi,  v2 eAi+l,  

where v~ and v_, are the two vertices of e} 
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F o r  each c o n f i g u r a t i o n  w a n d  each  0 ~< i ~< n, we cons ide r  the fo l lowing  set: 

Te(w, n)= {eeSg: there  exist  two d i s jo in t  pa ths  wi th  r(e) - 1 f rom 

two vert ices of  e to L,, a n d  R,,, respect ively,  

such tha t  one  of  these two p a t h s  f rom the  ver tex  e 

in A;+  ] to R,, s tays in x l  > i} 

and 

V~(w, n)= {v: the vertices of Ti(w, n) in A;} 

V~(w, n)= {v: the vertices of Tt(w, n) in A,.+ 1} 

(see Fig. 1). Now we connect all vertices in V~(w, n) for i = 0 ,  1, 2 ..... n -  1 
by conducting wires (see Fig. 1 ). Then we connect all vertices in Via(w, 17) 
for i = 1,..., 17 by conducting wires. Furthermore,  if V~+ 1 c~ V,. n = ~ ,  we also 
connect one of V~§ to one of V ff by a conducting wire (see Fig. 1). 
Denote by r',, the resistance with the special connection. By the shorting 
law, 

~ t 
F n .~ r n 

t \  : 
1 I 1 . .  , 

1 ", ;1 : 

U 1  : i 
s I 

i - 1  i i + 1  

[O,n|' 

o~ �9 

0 1 2 3 n 

Fig. 1. The bold edges on the left side are Ti_dw, n) and Ti(w,n), respectively, and the 
dotted lines are conducting wires. Right: The graph after identifying the vertices of V~'+~ and 
V~ as a vertex. 
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N o w  we est imate ri,. Let "' " ~,,(t) be the resistance between V~ and V~.  
Surely, for each i there are m a n y  paths  with r ( e ) =  1 f rom V~ that  first 
cross the plane A i and then double  back  to join V~+ l (see Fig. 1). No te  
that  by our  special connections,  V~ and V~+ 1 are connected by conduct ing 
wires so that  these paths  will not  reduce any resistance. Therefore,  we m a y  
identify these vertices of  V~+I and these vertices of  V~ as a vertex. I f  we 
do this, we obtain  a g raph  which has vertices denoted by 0, 1 ..... n and 
edges between i and i +  1 denoted by e~ ..... e l v  Li (see Fig. 1). Clearly, there 
are ] V~[ edges between vertex i and vertex i +  1 with resistance 1. Then 

, ,-  t 1 
r,, ~ ' " and "' " 

' = , , , ( 0  = l v ~ l  
r,,(1) (3) 

i = O  

Therefore,  by Jensen's  inequality, 

I12 

r',,/> ET---~ I Vf[  (4) 

By the definition of V~ and the same p roo f  as in ref. 3 [see (4.8)-(4.11) in 
ref. 3] ,  

1 1 1 
- -  ~< lim sup - -  ~< lim sup - -  
p ( p ) nr ,, nr',, 

Y'.7=~ [Vr ~< dOn(p )  O(p) (5) ~< lim sup n ~ 

The theorem is proved.  
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